DiFfRG
Loading...
Searching...
No Matches
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
 CDiFfRG::internal::__TLITypes< NT >
 CDiFfRG::internal::__TLITypes< autodiff::real >
 CDiFfRG::internal::__TLITypes< double >
 CDiFfRG::internal::__TLITypes< float >
 CDiFfRG::get_type::internal::_ctype< CT >
 CDiFfRG::get_type::internal::_ctype< autodiff::Real< 1, complex< double > > >
 CDiFfRG::get_type::internal::_ctype< autodiff::Real< 1, complex< float > > >
 CDiFfRG::get_type::internal::_ctype< autodiff::Real< 1, double > >
 CDiFfRG::get_type::internal::_ctype< autodiff::Real< 1, float > >
 CDiFfRG::get_type::internal::_ctype< complex< double > >
 CDiFfRG::get_type::internal::_ctype< complex< float > >
 CDiFfRG::get_type::internal::_ctype< double >
 CDiFfRG::get_type::internal::_ctype< float >
 CDiFfRG::get_type::internal::_InverseSparseMatrixType< SparseMatrixType >
 CDiFfRG::get_type::internal::_InverseSparseMatrixType< dealii::BlockSparseMatrix< NT > >
 CDiFfRG::get_type::internal::_InverseSparseMatrixType< dealii::SparseMatrix< NT > >
 CDiFfRG::get_type::internal::_NumberType< VectorType >
 CDiFfRG::get_type::internal::_NumberType< dealii::BlockVector< NT > >
 CDiFfRG::get_type::internal::_NumberType< dealii::Vector< NT > >
 CDiFfRG::get_type::internal::_SparsityPattern< SparseMatrixType >
 CDiFfRG::get_type::internal::_SparsityPattern< dealii::BlockSparseMatrix< NT > >
 CDiFfRG::get_type::internal::_SparsityPattern< dealii::SparseMatrix< NT > >
 CDiFfRG::AbstractAdaptor< VectorType >Implement a simple interface to do all adaptivity tasks, i.e. solution transfer, reinit of dofHandlers, etc
 CDiFfRG::AbstractAdaptor< Assembler::Discretization::VectorType >
 CDiFfRG::AbstractAssembler< VectorType, SparseMatrixType, dim >This is the general assembler interface for any kind of discretization. An assembler is responsible for calculating residuals and their jacobians for any given discretization, including both the spatial part and any further variables. Any assembler for a specific spatial discretization must fully implement this interface
 CDiFfRG::AbstractAssembler< Discretization_::VectorType, Discretization_::SparseMatrixType, Discretization_::dim >
 CDiFfRG::AbstractAssembler< Vector< double >, SparseMatrix< double >, 0 >
 CDiFfRG::AbstractFlowingVariables< NumberType >A class to set up initial data for whatever discretization we have chosen. Also used to switch/manage memory, vectors, matrices over interfaces between spatial discretization and separate variables
 CDiFfRG::AbstractFlowingVariables< Discretization::NumberType >
 CDiFfRG::AbstractFlowingVariables< double >
 CDiFfRG::AbstractLinearSolver< SparseMatrixType, VectorType >
 CDiFfRG::AbstractMinimizer< dim >Abstract class for minimization in arbitrary dimensions
 CDiFfRG::AbstractMinimizer< 1 >
 CDiFfRG::def::AbstractModel< Model, Components_ >The abstract interface for any numerical model. Most methods have a standard implementation, which can be overwritten if needed. To see how the models are used, refer to the DiFfRG::AbstractAssembler class and the guide
 CDiFfRG::AbstractRootFinder< dim >
 CDiFfRG::AbstractRootFinder< 1 >
 CDiFfRG::AbstractTimestepper< VectorType_, SparseMatrixType_, dim_ >The abstract base class for all timestepping algorithms. It provides a standard constructor which populates typical timestepping parameters from a given JSONValue object, such as the timestep sizes, tolerances, verbosity, etc. that are used in the timestepping algorithms
 CAbstractTimestepper< VectorType, dealii::SparseMatrix< get_type::NumberType< VectorType > >, 0 >
 CDiFfRG::AbstractTimestepper< VectorType, SparseMatrixType, dim >
 CDiFfRG::def::internal::AD_tools< AD_type >
 CDiFfRG::def::internal::AD_tools< autodiff::dual >
 CDiFfRG::def::internal::AD_tools< autodiff::real >
 CDiFfRG::def::ADjacobian_boundary_numflux< Model, AD_type >
 CDiFfRG::def::ADjacobian_boundary_numflux< Model, autodiff::dual >
 CDiFfRG::def::ADjacobian_boundary_numflux< Model, autodiff::real >
 CDiFfRG::def::ADjacobian_extractors< Model, AD_type >
 CDiFfRG::def::ADjacobian_extractors< Model, autodiff::dual >
 CDiFfRG::def::ADjacobian_extractors< Model, autodiff::real >
 CDiFfRG::def::ADjacobian_flux< Model, AD_type >
 CDiFfRG::def::ADjacobian_flux< Model, autodiff::dual >
 CDiFfRG::def::ADjacobian_flux< Model, autodiff::real >
 CDiFfRG::def::ADjacobian_mass< Model, AD_type >
 CDiFfRG::def::ADjacobian_mass< Model, autodiff::dual >
 CDiFfRG::def::ADjacobian_mass< Model, autodiff::real >
 CDiFfRG::def::ADjacobian_numflux< Model, AD_type >
 CDiFfRG::def::ADjacobian_numflux< Model, autodiff::dual >
 CDiFfRG::def::ADjacobian_numflux< Model, autodiff::real >
 CDiFfRG::def::ADjacobian_source< Model, AD_type >
 CDiFfRG::def::ADjacobian_source< Model, autodiff::dual >
 CDiFfRG::def::ADjacobian_source< Model, autodiff::real >
 CDiFfRG::def::ADjacobian_variables< Model, AD_type >
 CDiFfRG::def::ADjacobian_variables< Model, autodiff::dual >
 CDiFfRG::def::ADjacobian_variables< Model, autodiff::real >
 CArithmeticTraits
 Cintegrators::transforms::Baker
 Cintegrators::transforms::BakerImpl< I, D >
 CDiFfRG::Interpolation::BarycentricThis class takes in x-dependent data and interpolates it to a given x on request
 Cintegrators::transforms::detail::Binomial< n, k, typename >
 CDiFfRG::BosonicCoordinates1DFiniteT< Idx, NT >
 CDiFfRG::BosonicMatsubaraValues< Idx, NT >
 CDiFfRG::BosonicRegulator< OPTS >Implements one of the standard exponential regulators, i.e
 CDiFfRG::BosonicRegulatorOpts
 Cintegrators::core::callback_params_t
 CDiFfRG::ComponentDescriptor< _FEFunctionDescriptor, _VariableDescriptor, _ExtractorDescriptor, LDGDescriptors >A class to describe how many FE functions, additional variables and extractors are used in a model
 CDiFfRG::ConfigurationHelperClass to read parameters given from the command line and from a parameter file
 CDiFfRG::CoordinatePackND< Coordinates >Utility class for combining multiple coordinate systems into one
 CDiFfRG::CG::internal::CopyData_I< NumberType >
 CDiFfRG::dDG::internal::CopyData_I< NumberType >
 CDiFfRG::DG::internal::CopyData_I< NumberType >
 CDiFfRG::FV::KurganovTadmor::internal::CopyData_I< NumberType >
 CDiFfRG::LDG::internal::CopyData_I< NumberType >
 CDiFfRG::CG::internal::CopyData_J< NumberType >
 CDiFfRG::dDG::internal::CopyData_J< NumberType >
 CDiFfRG::DG::internal::CopyData_J< NumberType >
 CDiFfRG::FV::KurganovTadmor::internal::CopyData_J< NumberType >
 CDiFfRG::LDG::internal::CopyData_J< NumberType >
 CDiFfRG::LDG::internal::CopyData_J_full< NumberType, n_fe_subsystems >
 CDiFfRG::CG::internal::CopyData_R< NumberType >
 CDiFfRG::dDG::internal::CopyData_R< NumberType >
 CDiFfRG::DG::internal::CopyData_R< NumberType >
 CDiFfRG::FV::KurganovTadmor::internal::CopyData_R< NumberType >
 CDiFfRG::LDG::internal::CopyData_R< NumberType >
 CDiFfRG::dDG::internal::CopyData_J< NumberType >::CopyDataFace_J
 CDiFfRG::DG::internal::CopyData_J< NumberType >::CopyDataFace_J
 CDiFfRG::FV::KurganovTadmor::internal::CopyData_J< NumberType >::CopyDataFace_J
 CDiFfRG::LDG::internal::CopyData_J< NumberType >::CopyDataFace_J
 CDiFfRG::LDG::internal::CopyData_J_full< NumberType, n_fe_subsystems >::CopyDataFace_J
 CDiFfRG::dDG::internal::CopyData_R< NumberType >::CopyDataFace_R
 CDiFfRG::DG::internal::CopyData_R< NumberType >::CopyDataFace_R
 CDiFfRG::FV::KurganovTadmor::internal::CopyData_R< NumberType >::CopyDataFace_R
 CDiFfRG::LDG::internal::CopyData_R< NumberType >::CopyDataFace_R
 CDiFfRG::CG::internal::CopyData_I< NumberType >::CopyFaceData_I
 CDiFfRG::dDG::internal::CopyData_I< NumberType >::CopyFaceData_I
 CDiFfRG::DG::internal::CopyData_I< NumberType >::CopyFaceData_I
 CDiFfRG::FV::KurganovTadmor::internal::CopyData_I< NumberType >::CopyFaceData_I
 CDiFfRG::LDG::internal::CopyData_I< NumberType >::CopyFaceData_I
 CDiFfRG::CsvOutputA class to output data to a CSV file
 CDiFfRG::CSVReaderThis class reads a .csv file and allows to access the data
 CDiFfRG::Interpolation::CubicSplineThis class takes in x-dependent data and interpolates it to a given x on request. This class uses the cubic spline methods from gsl to interpolate the data
 Cintegrators::core::cuda::detail::cuda_memory< Tin >
 CDiFfRG::DataOutput< dim, VectorType >Class to manage writing to files. FEM functions are written to vtk files and other data is written to csv files
 CDiFfRG::DataOutput< 0, Vector< double > >
 CDiFfRG::CG::Discretization< Components_, NumberType_, Mesh_ >Class to manage the system on which we solve, i.e. fe spaces, grids, etc. This class is a System for CG systems
 CDiFfRG::DG::Discretization< Components_, NumberType_, Mesh_ >Class to manage the system on which we solve, i.e. fe spaces, grids, etc. This class is a System for DG systems, i.e. without LDG
 CDiFfRG::FV::Discretization< Components_, NumberType_, Mesh_ >Class to manage the system on which we solve, i.e. fe spaces, grids, etc. This class is a System for FV systems
 CDiFfRG::LDG::Discretization< Components_, NumberType_, Mesh_ >Class to manage the system on which we solve, i.e. fe spaces, grids, etc. This class is a System for LDG systems, i.e. DG with additional projections (e.g. derivatives)
 CDiFfRG::AbstractTimestepper< VectorType_, SparseMatrixType_, dim_ >::explicitParameters
 CDiFfRG::ExponentialRegulator< OPTS >Implements one of the standard exponential regulators, i.e
 CDiFfRG::ExponentialRegulatorOpts
 CDiFfRG::ExternalDataInterpolatorThis class takes in a .csv file with x-dependent data and interpolates it to a given x on request
 Cintegrators::transforms::detail::Factorial< n, typename >
 Cintegrators::transforms::detail::Factorial< n, typename std::enable_if< n==0 >::type >
 Cstd::false_type
 CDiFfRG::FEOutput< dim, VectorType >A class to output finite element data to disk as .vtu files and .pvd time series
 CDiFfRG::FEOutput< 0, Vector< double > >
 CDiFfRG::FermionicCoordinates1DFiniteT< Idx, NT >
 CDiFfRG::FermionicMatsubaraValues< Idx, NT >
 CDiFfRG::FixedString< N >A fixed size compile-time string
 CDiFfRG::def::FlowBoundaries< Model >
 CDiFfRG::def::FlowDirections< n >
 CDiFfRG::FlowEquations
 CDiFfRG::FlowEquationsFiniteT
 CDiFfRG::def::fRGUsed to keep track of the RG time and the cutoff scale
 CFunction
 CDiFfRG::Integrator4DQMC< NT, KERNEL >::Functor< Args >
 CDiFfRG::IntegratorAngleQMC< d, NT, KERNEL >::Functor< Args >
 CDiFfRG::IntegratorQMC< d, NT, KERNEL >::Functor< Args >
 CDiFfRG::Integrator1DCartesianGPU< NT, KERNEL >::functor< T >Custom functor for the thrust::transform_reduce function
 CDiFfRG::Integrator4DGPU_fq< NT, KERNEL, q1, q2 >::functor< T >
 CDiFfRG::IntegratorGPU< d, NT, KERNEL >::functor< T >Custom functor for the thrust::transform_reduce function
 CDiFfRG::GLQuadrature< N, ctype >
 CDiFfRG::GLQuadrature< 1, ctype >
 CDiFfRG::GLQuadrature< 10, ctype >
 CDiFfRG::GLQuadrature< 11, ctype >
 CDiFfRG::GLQuadrature< 12, ctype >
 CDiFfRG::GLQuadrature< 128, ctype >
 CDiFfRG::GLQuadrature< 13, ctype >
 CDiFfRG::GLQuadrature< 14, ctype >
 CDiFfRG::GLQuadrature< 15, ctype >
 CDiFfRG::GLQuadrature< 16, ctype >
 CDiFfRG::GLQuadrature< 2, ctype >
 CDiFfRG::GLQuadrature< 20, ctype >
 CDiFfRG::GLQuadrature< 24, ctype >
 CDiFfRG::GLQuadrature< 3, ctype >
 CDiFfRG::GLQuadrature< 32, ctype >
 CDiFfRG::GLQuadrature< 4, ctype >
 CDiFfRG::GLQuadrature< 48, ctype >
 CDiFfRG::GLQuadrature< 5, ctype >
 CDiFfRG::GLQuadrature< 6, ctype >
 CDiFfRG::GLQuadrature< 64, ctype >
 CDiFfRG::GLQuadrature< 7, ctype >
 CDiFfRG::GLQuadrature< 8, ctype >
 CDiFfRG::GLQuadrature< 9, ctype >
 CDiFfRG::GLQuadrature< 96, ctype >
 CDiFfRG::AbstractTimestepper< VectorType_, SparseMatrixType_, dim_ >::implicitParameters
 CDiFfRG::IndexStack< Idx >
 Cstd::integral_constant
 CDiFfRG::Integrator1DCartesianGPU< NT, KERNEL >Integration of an arbitrary 1D function from qx_min to qx_max using CUDA
 CDiFfRG::Integrator1DCartesianTBB< NT, KERNEL >Integration of an arbitrary 1D function from qx_min to qx_max using TBB
 CDiFfRG::Integrator2DCartesianGPU< NT, KERNEL >Integration of an arbitrary 2D function from (qx_min, qy_min) to (qx_max, qy_max) using TBB
 CDiFfRG::Integrator2DCartesianTBB< NT, KERNEL >Integration of an arbitrary 2D function from (qx_min, qy_min) to (qx_max, qy_max) using TBB
 CDiFfRG::Integrator2Dpq0GPU< NT, KERNEL >Integrator for 2+1D integrals over p, q0 and an angle on the GPU. Calculates
 CDiFfRG::Integrator2Dpq0TBB< NT, KERNEL >Integrator for 2+1D integrals over p, q0 and an angle using TBB. Calculates
 CDiFfRG::Integrator2Dpx0GPU< NT, KERNEL >Integrator for 2+1D integrals over p, x0 and an angle using the GPU. Calculates
 CDiFfRG::Integrator2Dpx0TBB< NT, KERNEL >Integrator for 2+1D integrals over p, x0 and an angle using TBB. Calculates
 CDiFfRG::Integrator3DCartesianGPU< NT, KERNEL >
 CDiFfRG::Integrator3DCartesianTBB< NT, KERNEL >
 CDiFfRG::Integrator3DGPU< NT, KERNEL >
 CDiFfRG::Integrator3Dpq0GPU< NT, KERNEL >
 CDiFfRG::Integrator3Dpq0TBB< NT, KERNEL >
 CDiFfRG::Integrator3Dpx0GPU< NT, KERNEL >
 CDiFfRG::Integrator3Dpx0TBB< NT, KERNEL >
 CDiFfRG::Integrator3DTBB< NT, KERNEL >
 CDiFfRG::Integrator4D2AngGPU< NT, KERNEL >GPU integrator for the integration of a 4D function with two angles with CUDA. Calculates
 CDiFfRG::Integrator4D2AngTBB< NT, KERNEL >Integrator for the integration of a 4D function with two angles with CUDA. Calculates
 CDiFfRG::Integrator4DFiniteTq0GPU< NT, KERNEL >
 CDiFfRG::Integrator4DFiniteTq0TBB< NT, KERNEL >
 CDiFfRG::Integrator4DFiniteTx0GPU< NT, KERNEL >
 CDiFfRG::Integrator4DFiniteTx0TBB< NT, KERNEL >
 CDiFfRG::Integrator4DGPU< NT, KERNEL >GPU integrator for the integration of a 4D function with three angles with CUDA. Calculates
 CDiFfRG::Integrator4DGPU_fq< NT, KERNEL, q1, q2 >
 CDiFfRG::Integrator4DOACC< NT, KERNEL >
 CDiFfRG::Integrator4DQMC< NT, KERNEL >GPU integrator for the integration of a 4D function with three angles with quasi-Monte-Carlo. Calculates
 CDiFfRG::Integrator4DTBB< NT, KERNEL >Integrator for the integration of a 4D function with three angles with TBB. Calculates
 CDiFfRG::IntegratorAngleFiniteTq0GPU< d, NT, KERNEL >
 CDiFfRG::IntegratorAngleFiniteTq0TBB< d, NT, KERNEL >
 CDiFfRG::IntegratorAngleFiniteTx0GPU< d, NT, KERNEL >
 CDiFfRG::IntegratorAngleFiniteTx0TBB< d, NT, KERNEL >
 CDiFfRG::IntegratorAngleGPU< d, NT, KERNEL >GPU integrator for the integration of a function with one angle with CUDA. Calculates
 CDiFfRG::IntegratorAngleQMC< d, NT, KERNEL >GPU integrator for the integration of a function with one angle with quasi-Monte-Carlo. Calculates
 CDiFfRG::IntegratorAngleTBB< d, NT, KERNEL >Integrator for the integration of a function with one angle with TBB. Calculates
 CDiFfRG::IntegratorConstant< d, NT, KERNEL >
 CDiFfRG::IntegratorFiniteTq0GPU< d, NT, KERNEL >
 CDiFfRG::IntegratorFiniteTq0TBB< d, NT, KERNEL >
 CDiFfRG::IntegratorFiniteTx0GPU< d, NT, KERNEL >
 CDiFfRG::IntegratorFiniteTx0TBB< d, NT, KERNEL >
 CDiFfRG::IntegratorGPU< d, NT, KERNEL >
 CDiFfRG::IntegratorQMC< d, NT, KERNEL >
 CDiFfRG::IntegratorTBB< d, NT, KERNEL >
 Cintegrators::transforms::detail::IPow< D, n, typename >
 Cintegrators::transforms::detail::IPow< D, n, typename std::enable_if< n%2 !=0 &&n !=0 >::type >
 Cintegrators::transforms::detail::IPow< D, n, typename std::enable_if< n==0 >::type >
 CDiFfRG::JSONValueA wrapper around the boost json value class
 CDiFfRG::KINSOL< VectorType_ >A newton solver, using local error estimates for each vector component
 Cintegrators::transforms::Korobov< r0, r1 >
 Cintegrators::transforms::detail::KorobovCoefficient< D, k, a, b, typename >
 Cintegrators::transforms::detail::KorobovCoefficient< D, k, a, b, typename std::enable_if< k==0 >::type >
 Cintegrators::transforms::KorobovImpl< I, D, r0, r1 >
 Cintegrators::transforms::detail::KorobovTerm< D, k, a, b, typename >
 Cintegrators::transforms::detail::KorobovTerm< D, k, a, b, typename std::enable_if< k==0 >::type >
 CDiFfRG::def::LDGUpDownFluxes< Model, Collections >
 Cintegrators::core::least_squares_wrapper_t< D, F1, F2, F3 >
 CDiFfRG::LinearCoordinates1D< NT >
 CDiFfRG::LinearInterpolator1D< NT, Coordinates >A linear interpolator for 1D data, both on GPU and CPU
 CDiFfRG::LinearInterpolator2D< NT, Coordinates >A linear interpolator for 2D data, both on GPU and CPU
 CDiFfRG::LinearInterpolator3D< NT, Coordinates >A linear interpolator for 3D data, both on GPU and CPU
 CDiFfRG::LitimRegulator< Dummy >Implements the Litim regulator, i.e
 CDiFfRG::def::LLFFlux< Model >
 CDiFfRG::LogarithmicCoordinates1D< NT >
 CDiFfRG::MatsubaraQuadrature< NT >A quadrature rule for (bosonic) Matsubara frequencies, based on the method of Monien [1]. This class provides nodes and weights for the summation
 CDiFfRG::internal::MatsubaraStorageA class that stores Matsubara quadrature points and weights for a given T, E. Its main purpose is to avoid recomputing the quadrature points and weights for each Matsubara integrator and provide a search algorithm to find previously computed Matsubara quadratures
 CDiFfRG::named_tuple< tuple_type, strs >A class to store a tuple with elements that can be accessed by name. The names are stored as FixedString objects and their lookup is done at compile time
 CDiFfRG::NDBlock< _str, _val >
 CDiFfRG::Newton< VectorType_ >A newton solver, using local error estimates for each vector component
 CDiFfRG::def::NoJacobians
 Cintegrators::fitfunctions::None
 Cintegrators::transforms::None
 Cintegrators::fitfunctions::NoneFunction< D >
 Cintegrators::fitfunctions::NoneImpl< I, D, M >
 Cintegrators::transforms::NoneImpl< I, D >
 Cintegrators::fitfunctions::NoneTransform< I, D, M >
 CDiFfRG::def::NoNumFlux< Model >
 CDiFfRG::PolynomialA class representing a polynomial
 CDiFfRG::PolynomialExpRegulator< OPTS >Implements a regulator given by
 CDiFfRG::PolynomialExpRegulatorOpts
 Cintegrators::fitfunctions::PolySingular
 Cintegrators::fitfunctions::PolySingularFunction< D >
 Cintegrators::fitfunctions::PolySingularHessian< D >
 Cintegrators::fitfunctions::PolySingularImpl< I, D, M >
 Cintegrators::fitfunctions::PolySingularJacobian< D >
 Cintegrators::fitfunctions::PolySingularTransform< I, D, M >
 Cintegrators::Qmc< T, D, M, P, F, G, H >
 Cintegrators::Qmc< NT, ctype, 1, integrators::transforms::NoneImpl >
 Cintegrators::Qmc< NT, ctype, 2, integrators::transforms::NoneImpl >
 Cintegrators::Qmc< NT, ctype, 4, integrators::transforms::NoneImpl >
 CDiFfRG::Quadrature< NT >
 CDiFfRG::QuadratureProviderA class that provides quadrature points and weights, in host and device memory. The quadrature points and weights are computed either the GSL quadratures or the MatsubaraQuadrature class. This avoids recomputing the quadrature points and weights for each integrator
 CDiFfRG::internal::QuadratureStorageA class that stores Quadrature points and weights for a given type and order Its main purpose is to avoid recomputing the quadrature points and weights for each integrator and provide a search algorithm to find previously computed quadratures
 CDiFfRG::RationalExpRegulator< OPTS >Implements a regulator given by
 CDiFfRG::RationalExpRegulatorOpts
 CDiFfRG::RectangularMesh< dim_ >Class to manage the discretization mesh, also called grid and triangluation, on which we simulate. This class only builds cartesian, regular grids, however cell density in all directions can be chosen independently
 Cstd::reference_wrapper
 Cintegrators::result< T >
 Cstd::runtime_error
 Cintegrators::samples< T, D >
 CDiFfRG::CG::internal::ScratchData< Discretization >Class to hold data for each assembly thread, i.e. FEValues for cells, interfaces, as well as pre-allocated data structures for the solutions
 CDiFfRG::dDG::internal::ScratchData< Discretization >Class to hold data for each assembly thread, i.e. FEValues for cells, interfaces, as well as pre-allocated data structures for the solutions
 CDiFfRG::DG::internal::ScratchData< Discretization >Class to hold data for each assembly thread, i.e. FEValues for cells, interfaces, as well as pre-allocated data structures for the solutions
 CDiFfRG::FV::KurganovTadmor::internal::ScratchData< Discretization >Class to hold data for each assembly thread, i.e. FEValues for cells, interfaces, as well as pre-allocated data structures for the solutions
 CDiFfRG::LDG::internal::ScratchData< Discretization >Class to hold data for each assembly thread, i.e. FEValues for cells, interfaces, as well as pre-allocated data structures for the solutions
 Cintegrators::transforms::Sidi< r0 >
 Cintegrators::transforms::detail::SidiCoefficient< D, k, r, typename >
 Cintegrators::transforms::detail::SidiCoefficient< D, k, r, typename std::enable_if<(r % 2) !=0 >::type >
 Cintegrators::transforms::detail::SidiCoefficient< D, k, r, typename std::enable_if<(r % 2)==0 >::type >
 Cintegrators::transforms::SidiImpl< I, D, r, typename >
 Cintegrators::transforms::SidiImpl< I, D, r, typename std::enable_if< r==0 >::type >
 Cintegrators::transforms::SidiImpl< I, D, r, typename std::enable_if<(r % 2) !=0 &&(r !=0)>::type >
 Cintegrators::transforms::SidiImpl< I, D, r, typename std::enable_if<(r % 2)==0 &&(r !=0)>::type >
 Cintegrators::transforms::detail::SidiTerm< D, k, r, typename >
 Cintegrators::transforms::detail::SidiTerm< D, k, r, typename std::enable_if<((r % 2) !=0) &&(k==0)>::type >
 Cintegrators::transforms::detail::SidiTerm< D, k, r, typename std::enable_if<((r % 2)==0) &&(k==0)>::type >
 Cintegrators::transforms::detail::SidiTerm< D, k, r, typename std::enable_if<(r % 2) !=0 &&(k !=0)>::type >
 Cintegrators::transforms::detail::SidiTerm< D, k, r, typename std::enable_if<(r % 2)==0 &&(k !=0)>::type >
 CDiFfRG::SimpleMatrix< NT, N, M >A simple NxM-matrix class, which is used for cell-wise Jacobians
 CDiFfRG::SmoothedLitimRegulator< OPTS >Implements one of the standard exponential regulators, i.e
 CDiFfRG::SmoothedLitimRegulatorOpts
 CDiFfRG::stepperChoice< prec >
 CDiFfRG::SubDescriptor< _descriptors >
 CDiFfRG::TC_Default< NEWT >This is a default time controller implementation which should be used as a base class for any other time controller. It only implements the basic tasks that should be done when advancing time, i.e. saving, logging if the stepper got stuck, checking if the simulation is finished and restricting the minimal timestep
 CDiFfRG::TexLinearInterpolator1D< NT, Coordinates >A linear interpolator for 1D data, using texture memory on the GPU and floating point arithmetic on the CPU
 CDiFfRG::TexLinearInterpolator1DStack< NT, Coordinates, max_stack_size >A linear interpolator for 1D data, using texture memory on the GPU and floating point arithmetic on the CPU
 CDiFfRG::TexLinearInterpolator2D< NT, Coordinates >A linear interpolator for 2D data, using texture memory on the GPU and floating point arithmetic on the CPU
 CDiFfRG::TexLinearInterpolator3D< NT, Coordinates >A linear interpolator for 3D data, using texture memory on the GPU and floating point arithmetic on the CPU
 CDiFfRG::def::Time
 Cstd::true_type
 CDiFfRG::def::UpDown< n >
 CDiFfRG::def::UpDownFlux< T >