GPU integrator for the integration of a 4D function with three angles with quasi-Monte-Carlo. Calculates.
More...
|
| Integrator4DQMC (QuadratureProvider &quadrature_provider, const std::array< uint, 4 > grid_size, const ctype x_extent, const JSONValue &json) |
|
| Integrator4DQMC (const ctype x_extent, const double rel_tol=1e-3, const double abs_tol=1e-14, const uint maxeval=100000) |
|
| Integrator4DQMC (const ctype x_extent, const JSONValue &json) |
|
template<typename... T> |
NT | get (const ctype k, const T &...t) const |
| Get the integral of the kernel.
|
|
template<typename... T> |
std::future< NT > | request (const ctype k, const T &...t) const |
| Request a future for the integral of the kernel.
|
|
template<typename NT, typename KERNEL>
class DiFfRG::Integrator4DQMC< NT, KERNEL >
GPU integrator for the integration of a 4D function with three angles with quasi-Monte-Carlo. Calculates.
\[
\int dp\, d\text{cos}_1\, d\text{cos}_2\, d\phi\, \frac{1}{(2\pi)^4} \sqrt{1-\text{cos}_1^2} f(p,
\text{cos}_1, \text{cos}_2, \phi, ...) + c
\]
with \( p^2 \) bounded by \( \text{x_extent} * k^2 \).
- Template Parameters
-
NT | The numerical type of the result. |
KERNEL | The kernel to integrate. |