|
template<int c0, int... c> |
static __forceinline__ __device__ __host__ auto | get_f (std::integer_sequence< int, c0, c... >, const auto x) |
|
template<int c0, int... c> |
static __forceinline__ __device__ __host__ auto | get_df (std::integer_sequence< int, c0, c... >, const auto x) |
|
template<typename NT1 , typename NT2 > |
static __forceinline__ __device__ __host__ auto | RB (const NT1 k2, const NT2 q2) |
|
template<typename NT1 , typename NT2 > |
static __forceinline__ __device__ __host__ auto | RBdot (const NT1 k2, const NT2 q2) |
|
template<typename NT1 , typename NT2 > |
static __forceinline__ __device__ __host__ auto | dq2RB (const NT1 k2, const NT2 q2) |
|
template<typename NT1 , typename NT2 > |
static __forceinline__ __device__ __host__ auto | RF (const NT1 k2, const NT2 q2) |
|
template<typename NT1 , typename NT2 > |
static __forceinline__ __device__ __host__ auto | RFdot (const NT1 k2, const NT2 q2) |
|
template<typename NT1 , typename NT2 > |
static __forceinline__ __device__ __host__ auto | dq2RF (const NT1 k2, const NT2 q2) |
|
template<class OPTS = PolynomialExpRegulatorOpts>
struct DiFfRG::PolynomialExpRegulator< OPTS >
Implements a regulator given by.
\[R_B(x) = k^2 e^{-f(x)}\,,\]
where \(f(x)\) is a polynomial chosen such that the propagator gets a pole of order order at x = 0 if the mass becomes negative (convexity restoration).
Provides the following functions:
- RB(k2, q2) = \( k^2 e^{-f(x)} \)
- RBdot(k2, q2) = \( \partial_t R_B(k^2,p^2) \)
- dq2RB(k2, q2) = \( \frac{\partial}{\partial q^2} R_B(k^2,p^2) \)
- RF(k2, q2) = \( \sqrt{R_B(k^2,p^2) + p^2} - p \)
- RFdot(k2, q2) = \( p \partial_ t R_F(k^2,p^2) \)
- dq2RF(k2, q2) = \( \frac{\partial}{\partial q^2} R_F(k^2,p^2) \)
- Template Parameters
-