This tutorial describes, how to generate flow equations from Mathematica and use them in the c-Code.
Generation of Flow equations
First, one has to import the DiFfRG
package and set the current directory.
Get["DiFfRG`"]
SetDirectory[GetDirectory[]];
The GetDirectory[]
command returns the directory of the current notebook of wolfram script. DiFfRG
imports, besides its own libraries, the packages FormTracer
and QMeSderivation
, which are used for the diagramatic derivation of the flow equations. The method works as folows:
- Use
QMeSderivation
to derive a diagramatic description of the 1PI-n-Point Functions
- Insert the propagators in the flow equations
- Compute the \(STr\) with
FormTracer
- Export the flow equations ()
1. QMeSderivation
This will just quickly recap the process, to derive the diagramatic expressions, a more detailed version can be found here. First, one has to define the Master-Equation
fRGEq = {
"Prefactor" -> {1/2},
<|"type" -> "Regulatordot", "indices" -> {i, j}|>,
<|"type" -> "Propagator", "indices" -> {i, j}|>
};
After that, one defines the structure of the model
fields = <|"bosonic" -> {\[Sigma][p], \[CapitalPi][p, {a}]},
"fermionic" -> {{qb[p, {d, c, f}], q[p, {d, c, f}]}}|>;
Truncation = {{\[Sigma], \[Sigma]}, {\[CapitalPi], \[CapitalPi]}, {q,
qb},(* propagators *)
{qb, q, \[Sigma]}, {qb, q, \[CapitalPi]}, {qb,
q, \[Sigma], \[Sigma]}, {qb, q, \[CapitalPi], \[CapitalPi]}, {qb,
q, \[Sigma], \[CapitalPi]}, {qb,
q, \[Sigma], \[Sigma], \[Sigma]}, {qb,
q, \[Sigma], \[Sigma], \[CapitalPi]}, {qb,
q, \[Sigma], \[CapitalPi], \[CapitalPi]}, {qb,
q, \[CapitalPi], \[CapitalPi], \[CapitalPi]}, (* quark-
meson scatterings *)
{\[Sigma], \[Sigma], \[Sigma]}, {\[Sigma], \[CapitalPi], \
\[CapitalPi]}, {\[Sigma], \[Sigma], \[Sigma], \[Sigma]}, {\[Sigma], \
\[Sigma], \[CapitalPi], \[CapitalPi]}, {\[CapitalPi], \[CapitalPi], \
\[CapitalPi], \[CapitalPi]}(* meson scatterings *)
};
SetupfRG = <|"MasterEquation" -> fRGEq,
"FieldSpace" -> fields,
"Truncation" -> Truncation|>;